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Executive summary

● Forecasting technologies is difficult; for instance, recent AI progress surprised many
of us. This report exploits the similarities between already-impressive Large Language
Models and emerging Protein Language Models to assess the prospects of the latter.
We forecast the arrival of an impressive generation in the field of biology.

● Epistemic status: A generalist’s view; we have direct experience with text models but
not protein models. This report represents 90 person-hours of work; it is not very likely
to significantly change in conclusions given another 90 hours of work but conclusions
might change in response to new research, in particular into scaling laws of protein
language models and research into how data quality affects performance.

● Dual-use status: This document has gone through external review and this version is
slightly edited, removing ideas beyond the current frontier. Contact us for details.

● Impressive protein generating capabilities are likely to be developed in the next 3 to 8
years. (70%)

○ The main bottlenecks are (a) data availability and quality; (b) progress on
multimodal learning; and (c) learning from small datasets.

● Impressive protein generation might proliferate if (a) current open-access culture
does not change; (b) licensing of the underlying proprietary datasets fails to prevent
sharing model checkpoints; (c) if structured access is not implemented, allowing
checks on model weights or API access. (85%)

○ So far, all of the best models have been freely available on day 1, with the
papers’ publication. We are not aware of any legal qualms resulting from this.
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Introduction

Progress in artificial intelligence became explosive with the deep learning (DL) revolution
(Cireşan et al 2012, Krizhevsky et al., 2012). Turing Award medalists LeCun, Bengio, & Hinton
(2015) write: “These methods have dramatically improved the state-of-the-art in speech
recognition, visual object recognition, object detection and many other domains such as drug
discovery and genomics.”

This has culminated in products like Midjourney (Midjourney, 2022) and ChatGPT (OpenAI,
2022), models that can produce human-like output from simple instructions to consumers.
These models are called generative AI because they can generate novel data that captures
relevant patterns and to some extent generalizes from the input data. Further, such models can
often be flexibly conditioned to produce data with very specific desired properties (style
transfer, format specifications, etc).

These models proliferated fast. Competitive open-source models for text-to-image generation
become widely accessible within 18 months of the original proprietary models, and within 4
months for conversational AI (see section Rapid proliferation through
open-source).

This dynamic is worrying for more threatening domains. Already we see that AI techniques
presently used for drug-discovery can be easily repurposed to find dangerous substances
(Urbina et al., 2022). Further, large language models also produce undesirable “toxic” content
despite intense efforts to make them harmless (Glaese et al, 2022, Bender et al., 2021), and we
have no reliable countermeasure to “prompt injection” attacks which completely sidestep task
conditioning and prosocial finetuning (Greshake et al 2023).

The question arises: when will generative AI for drug discovery be similarly impressive? (e.g.,
reducing the test burden such that a nonspecialist can generate molecules with their chosen
properties.) Coupled with the history of broad proliferation and availability of cloud labs (Dunlap
& Pauwels, 2017; National Academies of Sciences, Engineering and Medicine, 2018)1, this could
empower malicious actors to cause great harm (Brockmann et al., 2019; Ekins et al., 2023).

Already Ferruz et al. (2023) show that “generative sequence models can be employed to create
large libraries of plausible sequences for which oracle models predict structure and function
properties in a matter of hours. This process requires no technical DL expertise and provides
data from which experts can select and refine to one or a set of promising candidates that
constitute starting points for in-vitro experiments.”

“Drug discovery” is a very broad field, so we limit ourselves to in vivo protein design and in

1 Combining AI with experimentation in physical labs would likely be bottlenecked by labs’ throughput
(Crécy-Lagard, et al., 2022) but digital copies of physical labs (or digital twins (Tao & Qi, 2019) could
mitigate that and have already been proven to be useful in boosting manufacturing (Ferruz et al., 2023).
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particular language modeling techniques for protein sequence modeling, as this is the most
direct comparison with generative AI progress in the text domain, thanks to the similarities
between natural language and protein language.

To answer this question we will discuss drivers and characteristics of AI progress; we
decompose the trajectory of AI solving a domain into two steps:

1. an “ImageNet moment” (“a model, dataset and pretraining task that provide strong
off-the-shelf performance for most tasks, even with little data” to quote Ofer et al. 2021),
followed by
2. impressive2 generative models first being trained.

We use this two-step rubric to guess when biology’s “ImageNet moment” will arrive and how
long it will take to develop “impressive” generative models following it. Finally, we guess how
fast these models will proliferate under a business-as-usual scenario.

2 Here “impressive” is of course imprecise, we are roughly tracking “widely used by the general public because of
how good it is.”
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What drives AI progress? How is it measured?
To predict AI progress, it’s useful to get context on how it progressed in the past. Specifically,
what was the course of:

● progress in computer vision (CV), starting with AlexNet and culminating in
text-to-image synthesis models like DALL-E (Ramesh et al., 2021); and

● progress in “deep” natural language processing (NLP) starting with early applications to
classical NLP tasks, s.a. machine translation (Sutskever et al., 2014, Bahdanau et al., 2015)
and culminating in chat-bot systems like ChatGPT (OpenAI, 2022).

Computer vision: AlexNet to DALL-E

Despite their different objectives and architectures, here we place image classification and
image generation in the same lineage. We use the dataset of ML systems collected by Sevilla et
al. (2021) and curate a subset of notable systems (see page 6).

A rough summary of the following table: in late 2012, convolutional neural networks showed
promise. Shortly afterwards, systems pre-trained on ImageNet, such as DeCAF, showed
success in all sorts of CV tasks; transfer learning by pretraining on ImageNet was so effective
that it became the default (Mahajan et al., 2018). Image generation progressed from
underwhelming to very impressive in 7 years. In mid 2022, a text-to-image model was
open-sourced by StabilityAI (2022), which stimulated a lot of further open-source progress
(Willison, 2022).

A comprehensive study of benchmark dynamics (Ott et al., 2022) roughly agrees with our
characterisation of progress: “In computer vision, high research intensity and continuous
progress on image classification benchmarking (Supplementary Fig. 1) started in 2013. This is
earlier than most other AI tasks, as those were the first application areas in which deep learning
started to excel. Notable later advances happened in 3D vision processing (since 2016), image
generation (since 2017) and few-shot learning (2018–2019). In terms of relative SOTA
improvements, the map for CV shows a wide array of patterns in benchmark dynamics across
different AI tasks that elude simple narratives about benchmark intensity and progress
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AlexNet 30/09/2012 Krizhevsky et al., 2012 Early DL system fo
image classificatio
starts “deep learnin
revolution”

DeCAF 04/11/2013 Donahue, et al., 2013 First system pre-traine
on
ImageNet achieve
SoTA results on som
CV tasks.

VAE 20/12/2013 Kingma & Welling, 2014Early DL imag
generation system

GANs 10/06/2014 Goodfellow et al., 2014Early DL imag
generation system

GANs progress in fac
generation (Besirogl
2021): GANs, DCGANs
CoGANs, ProGAN
StyleGAN (and
modifications: on
two)

DALL-E 05/01/2021 Ramesh et al., 2021 Early advance
text-to-image system

DALL-E 2 06/04/2022 Ramesh et al., 2022 Advanced
text-to-image
system, API mad
available by OpenAI
Nov 2022

Stable Diffusion 13/04/2022 Rombach et al., 2022 Advanced
text-to-image
system openly release
to the public in Au
2022
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NLP: Seq2Seq to ChatGPT

We use the dataset of machine learning systems collected by Sevilla et al. (2021) and curate a
subset of notable ML systems:

NMT 01/09/2014 Bahdanau et al., 2015 Early DL machine translatio
system

Seq2Seq 10/09/2014 Sutskever et al., 2014 Early DL machine translatio
system

Transformer 12/06/2017 Vaswani et al., 2017 Architectural advance

ULM-FiT 18/01/2018 Howard & Ruder, 2018 Early “NLP ImageNe
moment”

ELMo 01/02/2018 Peters et al., 2018 Early “NLP ImageNe
moment”

GPT 01/06/2018 Radford et al., 2018 Early “NLP ImageNe
moment”

GPT-2 14/02/2019 Radford et al., 2019 Extreme transfer learnin
from language modellin
task

GPT-3 28/05/2020 Brown et al., 2020 Demonstrating power o
scaling

InstructGPT 04/03/2022 Ouyang et al., 2022 Making GPT-3 much mor
useful throug
human-feedback

ChatGPT 30/11/2022 OpenAI, 2022 Chatbot based o
InstructGPT ideas achieve
wide adoption

LLaMA 27/02/2023 Touvron et al., 2023 Leaked LLM, leading t
mass proliferation

Rough summary: in late 2014, deep neural networks were first applied to classical tasks in NLP.
In 2017, the Transformer architecture was developed, enabling large pre-trained language
models. In early-mid 2018, “NLP’s ImageNet moment arrived” (Ruder, 2018), pretrained language
models were used to achieve state-of-the-art results on a wide range of NLP tasks, following
the success of CV models pre-trained on ImageNet. OpenAI scaled their Generative Pre-trained
Transformer (GPT), showing remarkable capability advancement. They later fine-tuned GPT-3 to
be particularly useful, leading to the wide adoption of ChatGPT in Dec 2022. In March 2023,
LLaMa (a large language model developed by Meta) leaked, enabling mass proliferation
(Willison, 2023).
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In 4–5 years, NLP went from its ImageNet moment to the widespread and diffusion of
advanced generative models which can be run by any technically literate user.

A comprehensive study of benchmarks agrees with our story (Ott et al., 2022): “In NLP the tasks
of information extraction, sentiment analysis, language modeling and question answering had
significant density of novel SOTA results the earliest (2014–2016). It is noteworthy that none of
the tasks completely ceased to produce SOTA activity once they became established. Relative
SOTA improvements were modest until 2018. There was a slight clustering of large relative
SOTA improvements around 2018–2019—a possible interpretation being that this was when AI
language capabilities experienced a boost while benchmarks were not yet saturated.”

What explains AI progress?

Richard Sutton (2019) summarizes the key insight from the 70-year history of AI research as
"general methods that leverage computation are ultimately the most effective, and by a large
margin." Within the deep learning paradigm, we notice a further pattern:

● Key architecture found: an expressive general architecture is discovered and improved
(CNNs, Transformers);
● ImageNet moment: it is trained at scale on a large dataset, producing a
general-purpose model (for that data domain) which generalizes to other tasks, or can be used
as a backbone for task-specific models through transfer leaning;
● Scaling up: models are scaled following compute-optimal recipes derived from scaling
laws, more and more impressive capabilities are achieved including more and more powerful
generalization;
● Post-training: advanced evaluation techniques and fine-tuning are used to make a very
capable model particularly useful.

This has been retroactively named the “Foundation Model” paradigm (Bommasani et al., 2021).

AI Triad

Buchanan (2020) reduces the complexities of modern AI to three elements: “machine learning
systems use computing power to execute algorithms that learn from data.” This “AI Triad” is the
availability of computing power to scale models3, advances in algorithms to effectively learn
representations4, and the availability of data used to implicitly specify patterns to learn5. These
are the key drivers of performance of modern ML.

5 Data scaling references: Ré (2021) and Villalobos & Ho (2022)

4 Algorithmic improvement references: Hernandez & Brown (2020) and Erdil & Besiroglu (2022)

3 Compute scaling references: Hestness et al. (2017), Amodei & Hernandez (2018), Bartoldson et al. (2023)
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AI Triad abstracts key input to machine learning progress6. AI Triad is interdependent — scaling
laws describe how much data, compute, and parameters one needs to achieve a desired
performance using given architecture.

Scaling Laws

OpenAI (2023) demonstrated scaling language model performance, showing a consistent
trend across 10 orders of magnitude of compute, from a prototype system to GPT-4. Note
the unitless x-axis normalised to GPT-4 = 1.

As models have grown in size and complexity, researchers have retroactively fit empirical
scaling “laws” that govern their performance. These curves show that the loss of a transformer
language model tends to improve as the amount of compute used to train the model increases
following a predictable pattern7.

According to Villalobos (2023), “the modern study of scaling laws arguably started with
Hestness et al. (2017), who empirically identified power-law scaling of the test loss with

7 One needs to note, that while “loss” follows a predictable pattern, to our knowledge, there is no predictable
understanding of when human-understandable capabilities emerge in terms of “error.” See Gwern (2020) and Wei
et al. (2022) for a discussion of emergent capabilities. Bowman (2023) writes “GPT-3’s capacity for few-shot
learning on practical tasks appears to have been discovered only after it was trained, and its capacity for
chain-of-thought reasoning was discovered only several months after it was broadly deployed to the public.”

6 E.g., advancement in hardware feeds into compute availability; research and engineering talent feeds into
algorithmic progress; development of benchmarks feeds into algorithmic progress as benchmarks guide research
direction as “what you measure is what you get.”
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respect to training data size in several different domains. In Hestness et al. (2019) this previous
result was used to predict the increases in model and dataset sizes that would be needed to
reach important performance milestones.” And later on Kaplan et al. (2020), Hoffmann et
al.(2022), OpenAI (2023), and Google (2023) further verified them at much larger scales.

Villalobos (2023) concludes: “while ‘scale is all you need’ seems mostly true for direct training,
when it comes to transfer learning, the downstream performance critically depends on the tasks
at hand as well as the choice of architecture and hyperparameters (Tay et al., 2022). When the
upstream and downstream tasks are similar, downstream loss can be reasonably well predicted
from upstream loss, but this is not the case when the two tasks are substantially different
(Abnar et al., 2021).”
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Other characteristics of AI progress

AI progress surprised us

Progress in AI and applications surprised almost everyone, from highly regarded AI scientists to
professional forecasters and subject matter-experts; a further paper examining 3765
benchmarks concludes that “progress in AI as captured by improvements in SOTA benchmark
results remains rather unpredictable and prone to unexpected bursts of progress” (Ott et al.,
2022). Bowman (2023) notes that while “LLMs predictably get more capable with increasing
investment, even without targeted innovation” (see our section on scaling laws), “[m]any
important LLM behaviours emerge unpredictably as a byproduct of increasing investment.”

The sentiment is shared by Ganguli et al. (2022): “generative models have a paradoxical
combination of predictable loss on a broad training distribution (as embodied in their ”scaling
laws”), and unpredictable specific capabilities, inputs, and outputs. We believe that the
high-level predictability and appearance of useful capabilities drives rapid development of such
models, while the unpredictable qualities make it difficult to anticipate the consequences of
model deployment.”

From Wei et al. (2022): “Eight examples of emergence in the few-shot prompting setting.
Evaluations do not show predictable trend.
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● Advances in artificial intelligence happened faster than was commonly anticipated,
Geoffrey Hinton, sometimes referred to as a “Godfather of Deep Learning” summarized
it in a recent interview with CBS (2023): “Until quite recently, I thought it was going to
be like 20 to 50 years before we had general purpose AI. And now I think it may be 20
years or less.” and “I wouldn't completely rule that possibility [having general purpose AI
in five years] out now. Whereas a few years ago I would have said no way.”

● In 2021, Jacob Steinhardt’s research group commissioned 6 AI questions for professional
forecasters (Steinhardt, 2021). In his one-year retrospective he writes: “progress on ML
benchmarks happened significantly faster than forecasters expected. But forecasters
predicted faster progress than I did personally, and my sense is that I expect somewhat
faster progress than the median ML researcher does” (Steinhardt, 2022). Further, we can
already note that GPT-4 (OpenAI, 2023), released in early 2023, already exceeds the
forecast for 2025 (on the one measure which OpenAI reported).

● In biology, DeepMind’s AlphaFold shattered the competition in the CASP13 tournament:
“an anomalous leap, on the order of a doubling of the usual rate of improvement”
(AlQuraishi, 2018). Two years later, AlphaFold2 was an “advance so thorough it
compelled CASP organizers to declare the protein structure prediction problem for
single protein chains to be solved”, to quote AlQuraishi (2020). This went beyond
theoretical significance, according to McKinsey & Company (2022): “Biopharma
internalized AlphaFold2 and ColabFold to generate 3-D models of almost any known,
synthesized protein and protein–protein interactions, reducing access to 3-D structures
from 6 months to a few hours.”

● Ott et al. (2022) curated “3765 benchmarks covering the entire domains of computer
vision and natural language processing” and found that “dynamics of performance gains
on specific AI tasks usually do not follow clearly identifiable patterns. This indicates that
progress in AI as captured by improvements in SOTA benchmark results remains rather
unpredictable and prone to unexpected bursts of progress and phases of
saturation/stagnation. This is likely caused both by the complexities and limitations of
current benchmarking practices, as well as actual sudden bursts in AI capabilities.”
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Rapid proliferation through open-source

The ML community has extremely strong openness norms. Developers of AI systems often open
source them, including publicly sharing the model's weights, code, and the datasets used to
train the model. Such norms are valuable in any science, allowing researchers to reproduce and
build on each other's work.

At the same time, given growing concerns about malicious use of AI (Brundage et al., 2018),
other approaches such as structured access have emerged (Shevlane, 2022). Early attempts,
like the staged release of GPT-2 by OpenAI (Radford et al., 2019 and Solaiman et al., 2019) faced
harsh criticism from the community for not open sourcing their model (Zhang, 2019) and the
decision to not release GPT-3 code (Microsoft, 2020) faced similar criticism (Riedl, 2020).

Today, more organizations limit access to their models (as both weights and structured access).
But many highly capable models are still open-sourced. Early on T5-11B (Raffel et al., 2019)
open-source by Google in early 2020 was the most powerful publicly available mode. A
somewhat capable model, Meta’s OPT-175B was released in early 2022, for
non-commercial use only (Zhang et al., 2022). This was followed by the full open-sourcing of
BLOOM, a 176B parameter model developed by BigScience (BigScience, 2022). The volunteer
group EleutherAI has open-sourced several smaller models: GPT-Neo-2.7B in early 2020 (Black
et al., 2020), GPT-J-6B in mid-2021 (Wang & Komatsuzaki, 2021),
GPT-NeoX-20B in early 2022 (Black et al., 2022), and their Pythia training is in progress
(EleutherAI, 2023). Another mode of open-sourcing involves fine-tuning an open-source model
on outputs from a closed-source model, a kind of slow and lossy model extraction attack
(Chavinlo, 2023). Most recently, we can examine the proliferation of generative vision AI models
similar to DALL-E. We see that the open source community cannot yet match frontier models
like GPT-48, but it has had no problem catching up9 (and sometimes outpacing) models such
DALL-E, sometimes surpassing massive industrial labs when a good pretrained model is made
available to them.

Arb Research | 11

https://arxiv.org/abs/1802.07228
https://arxiv.org/abs/2201.05159
https://openai.com/research/better-language-models
http://arxiv.org/abs/1908.09203
http://arxiv.org/abs/1908.09203
https://thegradient.pub/openai-please-open-source-your-language-model/
https://blogs.microsoft.com/blog/2020/09/22/microsoft-teams-up-with-openai-to-exclusively-license-gpt-3-language-model/
https://thegradient.pub/ai-democratization-in-the-era-of-gpt-3/
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/2205.01068
https://bigscience.huggingface.co/blog/bloom
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://huggingface.co/EleutherAI/gpt-j-6b
https://arxiv.org/abs/2204.06745
https://github.com/EleutherAI/pythia
https://huggingface.co/chavinlo/gpt4-x-alpaca


TITLE OF THE REPORT

Most recently, we can examine the proliferation of generative vision AI models similar to
DALL-E. We see that the open source community cannot yet match frontier models like GPT-48,
but it has had no problem catching up9 (and sometimes outpacing) models such DALL-E,
sometimes surpassing massive industrial labs when a good pretrained model is made available
to them.

As a result we are not able to ensure safeguards are employed in releasing models. For example,
the infamous “GPT-4chan” was trained by fine-tuning a previously open-sourced model GPT-J
on a notably bigoted internet corpus (Kurenkov, 2022). Another example, pointedly summarized
by Wikipedia (2023): “Auto-GPT was used to create ChaosGPT, which, given the goal of
destroying humanity, was not immediately successful in doing so.”

Timeline of proliferation in text-to-image generation

January 2021 DALL-E, the first advanced text-to-image generation system
announced by OpenAI (OpenAI, 2021)

April 2022 DALL-E 2, the follow up system announced by OpenAI (OpenAI, 2022

April 2022 Stable Diffusion announced (stability.ai, 2022)

May 2022 Imagen announced by Google (Saharia et at., 2022)

May 2022 DALL-E available through waitlist

July 2022 Craiyon (DALL-E Mini) open-sourced under Apache 2.0

July 2022 Midjourney, an advanced proprietary model announced

August 2022 StabilityAI open-sources Stable Diffusion under CreativeM
OpenRAIL-M (stability.ai, 2022)

September 2022 DALL-E available without waitlist (OpenAI, 2022)

November 2022 OpenAI launches DALL-E API for developers (OpenAI, 2022)

9 After finishing this report, Gudibande et al. (2023) published a more throughout evaluation of ChatGPT-imitating
models (like Alpaca (Taori et al., 2023)), finding that “imitation models close little to none of the gap from the base
LM to ChatGPT on tasks that are not heavily supported in the imitation data” and “these performance
discrepancies may slip past human raters because imitation models are adept at mimicking ChatGPT's style but not
its factuality.” This indicates that proprietary models potentially have an advantage despite claims like “We
[Google] Have No Moat, And Neither Does OpenAI” (Semianalysis, 2023).

8 While writing this report, BLOOMChat was open-sourced, achieving a 45% win-rate against GPT-4 in a human
preference study (SambaNova, 2023), making the gap between open-source and proprietary models even smaller.
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Timeline of proliferation in text-to-text generation

January 27, 2022 InstructGPT a fine-tuning technique powering ChatGPT is announce
(OpenAI, 2022)

November 31, 2022 ChatGPT is released by OpenAI, it’s an overnight success amassing 1
users in 5 days and 100M users in 2 months (OpenAI, 2022).

February 6, 2023 Bard is announced by Google (Google, 2023)

February 24, 2023 LLaMa, a large language model, is released by Meta; it is available t
researchers for non-commercial purposes only (Meta AI, 2022)

March 3, 2023 LLaMa was leaked (The Verge, 2023)

March 13, 2023 Alpaca-7B, an instruction-fine tuned LLaMa-7B, is released by Stanfor
at a fine-tuning cost of 600 USD (Taori et al., 2023).

March 14, 2023 GPT-4 is released by OpenAI and is integrated into ChatGPT (OpenA
2023)

March 14, 2023 Claude is released by Anthropic (Anthropic, 2023)

March 21, 2023 Google opened up early access for Bard via a waitlist (Google, 2023)

March 30, 2023 Vicuna-13B, an instruction-fine tuned LLaMa-13B, is released b
Chiang et al. at a fine-tuning cost of 300 USD (The Vicuna Team
2023).

10

April 1, 2023 GPT4-x-Alpaca, a LLaMA 13B model fine-tuned with a collection o
GPT4 conversions, is released (Teknium, 2023).

10 For another set of evaluations, see the Open LLM Leaderboard (HuggingFace, 2023) and Chatbot
Arena (LMSYS, 2023).
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April 24, 2023 WizardLM, a fine-tuned 7B LLaMA mode, is released (Xu et al., 2023).

May 5, 2023 MosaicML announces MPT-7B, “a commercially-usable,
open-source model that matches (and in many ways surpasses
LLaMA-7B.” The context window is 65,000 tokens. (MosaicML, 2023)

May 11, 2023 The context window of Claude is expanded to 100,000 tokens, rough
75,000 words (Anthropic, 2023)

May 19, 2023 BLOOMChat, a 176B parameter chatbot, open-sourced by SambaNov
achieved a 45% win-rate against GPT-4 across 6 languages in a huma
preference study. (SambaNova, 2023)

For overall proliferation of LLMs, we reproduce Fig. 1 of Yang et al. (2023). While this Figure
doesn’t allow for comparison of capabilities, we can see about a 2 year gap between GPT-3 and
OPT, YaLM and BLOOM. (And a similar 2 year gap between GPT-2 and GPT-J — while GPT-2
was open-sourced, it’s still worthwhile to observe how fast the open-source community
catched-up.)\
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Open-source models are represented by solid squares, while closed-source models are
represented by hollow ones (Yang et al., 2023).
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Break in the trend?
In recent years, the gap between when capabilities are announced by leading labs and the time
they are widely available decreased from ~2 years to ~4 months. We also saw how eager the
open-source community is to improve the models they get access to. Newer ideas, such as
image-to-image diffusion, prompt generation, and negative prompts were adopted quickly.

This is of course all enabled by industrial labs contributing powerful base models, overcoming
the ~$10m fixed cost in compute alone. Most notably, all the LLMs developed by Meta have
been open-sourced to some degree (Yang et al., 2023).

The extraordinary popularity of https://github.com/Significant-Gravitas/Auto-GPT. Fo
comparison, PyTorch, the most popular deep learning framework, accumulated 67.2k stars
over 7 years.
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State of protein generation11

Natural language and protein language

Ofer et al. (2021) draw several parallels between natural and protein “languages”:

Like human language, protein sequences can be naturally represented as strings of letters. The
protein alphabet consists of 20 common amino acids (AAs) (excluding unconventional and rare
amino acids). Furthermore, like natural language, naturally evolved proteins are typically
composed of reused modular elements exhibiting slight variations that can be rearranged and
assembled in a hierarchical fashion. By this analogy, common protein motifs and domains, which
are the basic functional building blocks of proteins, are akin to words, phrases and sentences in
human language.

Another central feature shared by proteins and human language is information completeness.
Even though a protein is much more than a mere sequence of amino acids – it is also a
three-dimensional machine with a determined structure and function – these other aspects are
all predetermined by its amino-acid sequence.

Given this, we should not be surprised that NLP methods have been long used for protein
modelling. Likewise, it is not surprising that progress in large language models affected protein
research.

Indeed, Bommasani et al. (2021) were eager to name drug discovery as an area awaiting active
application: “Foundation models’ generativity can improve the search space and efficiency (see
§2.4: reasoning), which not only reduces the amount of experiments but also helps to discover
new and better drugs.” Further, they cite protein modeling as “one area where foundation
models have shown significant potential for impacting therapeutic design… applications range
from predicting viral mutations that can escape a vaccine-induced immune response to
predicting protein docking potential for better design of therapeutic antibodies.”

Ferruz & Höcker (2022) outline six applications where modern NLP tricks could be borrowed for
the benefit of protein research, to:

“(1) generate sequences in unobserved regions of protein space;
(2) fine-tune sequences of natural protein families to extend their repertoires;
(3) utilize their encoded vector representations as input for other downstream models for
protein engineering tasks;
(4) generate conditional sequences with specific functional properties;
(5) design completely novel and purpose-driven receptors and enzymes using
encoder-decoder Transformers; and
(6) gain a more complete understanding of sequence-structure-function relationships and
the rules that govern protein folding by interpreting these language models.”

11We found Peldom (2021) most useful in writing this review.
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Review of pre-trained protein “language” models12

While various language models have been applied to protein sequences, e.g., Yu et al. (2019)
used n-gram model, Alley et al. (2019) used LSTM, and Heinzeinger et al., (2019) used
ELMo-based approach. We will focus on Transformers pre-trained on protein data as
Transformers proved themselves in NLP.

Facebook’s Evolutionary Scale Model (ESM-700M) was the first Transformer model
pre-trained on 250 million sequences (86 billion amino acids) of the UniParc database (Rives et
al., 2021). Another early model was ProtTrans (Elnaggar et al., 2021), an adaptation of six popular
Transformer-based models13, released to the community (at
https://github.com/agemagician/ProtTrans) after being trained on 2.75 billion sequences (390
billion amino acids) taken from UniParc and the ‘Big Fantastic Database’. Both of these showed
success in learning “protein grammar” without any evolutionary or structural prior information.

The ESM model was later extended to ESM-MSA-1B to make use of Multiple Sequence
Alignment information (Rao et al., 2021). Other extensions include ProteinBERT (Ofer et al.,
2021), pre-trained on protein sequences and Gene Ontology (GO) annotations; Zhang et al.,
(2022) considers GO as a factual knowledge graph; Ingraham et al. (2019) augment Transformer
with graph-based representations of 3D molecular structure, “leveraging a
well-evidenced finding in protein science, namely that long-range dependencies in sequence
are generally short-range in 3D space”; Mansoor et al. (2021) encode both sequential and
structural information through joint semi-supervised training; Bepler & Berger (2021) also used
structural supervision; and Chen et al., (2022) correlated the embeddings learned from
sequences and structure by “pseudo bi-level” optimization.

With rapid progress in the medical domain, culminating in Med-PALM-2 (Singhal, 2023) scoring
86.5% on the MedQA benchmark and its answers “being preferred over physician answers by a
panel of physicians across eight of nine axes.” It is now natural to incorporate knowledge
already created by humans14 into multimodal models previously limited to using structural
information. Towards that goal, Liu et al. (2023) introduced ProteinDT, a multimodal framework
that leverages textual descriptions for protein design, and constructed SwissProtCLAP, a large
dataset with 441K text and protein pairs extracted from UniProt (UniProt, 2021). This is the first
work demonstrating text-to-protein generation. Likewise, Xu et al. (2023) introduced ProtST, a
model augmented with biomedical texts, and ProtDescribe, an accompanying dataset.

Following this was the Conditional Transformer Language (CTRL) (Keskar et al., 2019), an
autoregressive model that includes conditional tags allowing for controllable generation of

14According to Abdill (2019), cumulative papers in bioRxiv increased by a factor of 8 from the start of 2016 to the
end of 2018, doubling every year.

13 Transformer-XL, BERT, ALBERT, XLNet, T5, and ELECTRA.

12 We decided not to review protein generation tools inspired by GANs, VAEs, and Normalizing Flows as these
methods have seen less progress compared to LLMs. Some notable/recent models include: ProteinGAN (Repecka
et al., 2021), ProteoGAN (Kucera et al., 2022), MSA VAE (Hawkins-Hooker et al., 2021) and ProteinVAE (Lyu et al.,
2023). Likewise, we don’t focus on reinforcement learning techniques like once discussed by Mouchlis et al. (2021).
Neither we review diffusion models applied to protein generation such as RoseTTAFold Diffusion (Watson et al.,
2022) and Chroma (Ingraham et al., 2022); for a review of diffusion models in bioinformatics and protein
generation in particular see Guo et al. (2023).

Arb Research | 18

https://www.pnas.org/doi/10.1073/pnas.1814684116
https://www.nature.com/articles/s41592-019-0598-1
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-3220-8
https://scholar.google.com/scholar?q=Rives%2C%20Alexander%2C%20Siddharth%20Goyal%2C%20Joshua%20Meier%2C%20Demi%20Guo%2C%20Myle%20Ott%2C%20C.%20Lawrence%20Zitnick%2C%20Jerry%20Ma%2C%20and%20Rob%20Fergus.%202019.%20Biological%20Structure%20and%20Function%20Emerge%20from%20Scaling%20Unsupervised%20Learning%20to%20250%20Million%20Protein%20Sequences.%2010.1101622803
https://scholar.google.com/scholar?q=Rives%2C%20Alexander%2C%20Siddharth%20Goyal%2C%20Joshua%20Meier%2C%20Demi%20Guo%2C%20Myle%20Ott%2C%20C.%20Lawrence%20Zitnick%2C%20Jerry%20Ma%2C%20and%20Rob%20Fergus.%202019.%20Biological%20Structure%20and%20Function%20Emerge%20from%20Scaling%20Unsupervised%20Learning%20to%20250%20Million%20Protein%20Sequences.%2010.1101622803
https://scholar.google.com/scholar?q=Rives%2C%20Alexander%2C%20Siddharth%20Goyal%2C%20Joshua%20Meier%2C%20Demi%20Guo%2C%20Myle%20Ott%2C%20C.%20Lawrence%20Zitnick%2C%20Jerry%20Ma%2C%20and%20Rob%20Fergus.%202019.%20Biological%20Structure%20and%20Function%20Emerge%20from%20Scaling%20Unsupervised%20Learning%20to%20250%20Million%20Protein%20Sequences.%2010.1101622803
https://ieeexplore.ieee.org/document/9477085
https://github.com/agemagician/ProtTrans
https://www.biorxiv.org/content/10.1101/2021.02.12.430858v2
https://academic.oup.com/bioinformatics/article/38/8/2102/6502274
https://academic.oup.com/bioinformatics/article/38/8/2102/6502274
https://arxiv.org/abs/2201.11147
https://www.mit.edu/~vgarg/GenerativeModelsForProteinDesign.pdf
https://www.biorxiv.org/content/10.1101/2021.09.01.458592v1
https://www.cell.com/cell-systems/pdf/S2405-4712(21)00203-9.pdf
https://arxiv.org/abs/2204.04213
https://arxiv.org/pdf/2305.09617.pdf
https://arxiv.org/pdf/2302.04611.pdf
https://academic.oup.com/nar/article/49/D1/D480/6006196
https://arxiv.org/abs/2301.12040
https://arxiv.org/abs/1909.05858
https://www.biorxiv.org/content/biorxiv/early/2019/01/13/515643.full.pdf
https://www.nature.com/articles/s42256-021-00310-5
https://www.nature.com/articles/s42256-021-00310-5
https://pubmed.ncbi.nlm.nih.gov/35639661/
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008736
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008736
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7915729/
https://www.biorxiv.org/content/10.1101/2022.12.09.519842v1
https://www.biorxiv.org/content/10.1101/2022.12.09.519842v1
https://www.biorxiv.org/content/10.1101/2022.12.01.518682v1
https://arxiv.org/abs/2302.10907


TITLE OF THE REPORT

text15. ProGen (Madani et al., 2020) adapted CTRL for protein use, using UniparKB Keywords as
the conditional tags and training on 281 million protein sequences. Later, Madani et al. (2021)
experimentally evaluate model-generated artificial proteins, confirming their ability to perform
de novo protein generation.

Ferruz et al. (2022) combined two models: ProtGPT2 (Ferruz, 2022), used to generate
sequences, with ProtT5 (Elnaggar et al., 2021), used to annotate their functions and discriminate
them by desired function. Fine-tuning on protein examples with desired characteristics is used
to steer further generations.

Language models can solve a variety of tasks by prefixing the generation with a manually
created prompt16. Lester et al. (2021) developed prompt tuning, a method to automatically learn
“prompts” in the embedding space. Hesslow et al. (2022) successfully used it to generate
proteins from a target family.

SM-2 (Lin et al., 2022) is the largest protein LM to date: up to 15 billion parameters. “ESM-2
outperforms all tested single-sequence protein language models across a range of structure
prediction tasks.” While ESM-2 is not itself generative, Emami et al. (2023) introduced an MCMC
sampler allowing protein language models to efficiently discover variants with high evolutionary
likelihood. And Zheng et al. (2023) show how to “reprogram sequence-based protein language
models [...] to acquire an immediate
capability to design preferable protein sequences for given folds.”

Continuing this line of work at Meta, Hie et al. (2022) leveraged ESM-2 (and an end-to-end
protein folding model, ESM Fold (Lin et al., 2022)) to design a modular programming language
allowing specification of the desired properties for proteins.

Vu et al. (2023) point out that, while techniques directly borrowed from NLP work well, we
should not expect them to be optimal for protein modeling. It is well known that Transformers
that use byte pair encoding (BPE) (Sennrich et al., 2016) to solve out-of-vocabulary problems
struggle with character-level problems like arithmetic or anagrams because (some speculate)
BPE is not a “natural” fit for the tasks (Gwern, 2020).

Similarly, we shouldn’t be surprised if BPE or other standard encoders do not immediately align
with the most meaningful protein representations. In that direction, Elnaggar et al. (2023)
pursued a biology-informed approach and “through over twenty experiments ranging from
masking, architecture, and pre-training data”, derived insights allowing them to train Ankh, a
protein language model that surpassed the state-of-the-art performance of
ESM-2-15B with fewer parameters (<10% for pre-training, <7% for inference, and <30% for the
embedding dimension).

Ferruz & Höcker (2022) provide a helpful overview of protein LMs up to mid-2022; notable
papers published since this are covered in the above.

16Famously, GPT-2 learned to summarize a text if you prompt it like “<Text> TLDR:”.

15Imagine annotating your text with tags about sentiment, then you can steer the sentiment of text you generate
by prompting the model using an appropriate tag.
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(Ferruz & Höcker, 2022)

Scaling laws for protein generation

With the rapid growth of protein language model scales, from 38M parameters in July 2019 (Rao
et al., 2019) to 15B parameters in July 2022 (Lin et al., 2022), it is natural to ask what the role of
scaling (see Scaling Laws) in improving performance of generative models will be.

Hesslow et al. (2022) conducted the first and only scaling study, showing how capabilities
evolve with increased model size. RITA is a family of generative models with parameter counts
scaled between 85M, to 300M, to 680M, to 1.2B. This increase in size leads to a proportional
performance improvement: they found “an exponent of 0.074, significantly steeper than one
observed in NLP” (compared with an exponent of 0.05 found by Kaplan et al. (2020) for human
text17).

17It’s worth noting that Hoffmann et al. (2020) throughout analysis also suggest steeper scaling than suggested by
Kaplan et al. (2020).
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Further they note that “all but our smallest model still appear to be undertrained”, despite being
trained for 150 billion amino acids” — a finding which mimics Kaplan et al. (2020)’s observation
that optimal training should stop before convergence.

Scaling phenomena as demonstrated by the RITA family of models (Hesslow et al., 2022).

A similar trend was reinforced by ProGen2 (Nijkamp et al., 2022), a family of models trained on
different sequence datasets and whose parameter count was scaled up to 6.4B (Elnaggar et al.,
2023).

Given that this is early work, we should not be surprised if this estimated exponent changes,
making compute-efficient training look different, as happened with Chinchilla (Hoffmann et al.
2020) for human text. On present evidence, we agree with Elnaggar et al. (2023) “that
scaling-up protein language models may be significantly more impactful than scaling-up natural
language models.”

Knowing the functional form of the loss L(N, D) would be particularly useful in guiding further
scaling, especially in the regime where data is a potential bottleneck.
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We should thus expect more improvement from the next generation of compute-optimal
models.

Challenges18

After observing the effectiveness of techniques borrowed from NLP for protein design and the
apparently huge potential of scaling up protein language models, we are left wondering
whether training a 175 billion parameter model and incorporating fine-tuning could lead to a
revolution in protein generation similar to the ChatGPT breakthrough.

It’s unclear. While we noted domain similarities that seem to make NLP techniques effective at
protein generation, we need to also note the challenges and bottlenecks raised throughout
literature.

We now review dissimilarities between NLP and “protein language processing” (PLP) through
the lens of the AI Triad: data, algorithms, and compute.

Compute

On a first look, compute is just another commodity which applies roughly similarly to any input
domain. Given that similar architectures are used both in NLP and PLP, namely Transformers,
again prima facie we might not expect much difference in training cost or effectiveness.

Nonetheless, there might be differences in willingness to use compute, to spend whole
research budgets on large single experiments. We previously noted the model size hike from
38M parameters in July 2019 (Rao et al., 2019) to 15B parameters in July 2022 (Lin et al., 2022),
yet to be surpassed. We now compare trends between protein LMs and text LMs.’

Trend in parameter counts

Building on Romero-Romero et al. (2023), we collect model sizes of protein-LMs below.
Record-setting systems are bolded. Final-run training compute is not reported, so we estimate
it with the methods in Sevilla et al. (2022).19 These are uncertain and may be off by a factor of 5,
owing (among other things) to large unreported differences in GPU utilization.

19For reference, the text-LM GPT-3 took 3.14e23 FLOPs for its largest training run (Brown et al 2020).

18 Some readers might be interested in Akbar et al’s (2021) review of challenges to machine-learning based design
of fit-for-purpose monoclonal antibodies.
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Release System Max
Params

Estimated
FLOPs

Citation Institution

01/2023 Ankh 1.15B 2.1e1920 Elnaggar et al. 2023 Proteinea

12/2022 ZymCTRL 762M – Munsamy et al 2022 Basecamp

10/2022 ESM-2 15B 7.8e2221 Lin et al. 2023 Meta AI

06/2022 ProGEN2 6.4B 1.3e2222 Nijkamp et al. 2022 Salesforce

05/2022 DistilProtBert 230M – Geffen et al. 2022

05/2022 RITA 1.2B 4.1e2023 Hesslow et al. 2022 LightOn

05/2022 Tranception 700M – Notin et al. 2022

05/2022 ProtGPT2 762M – Ferruz et al. 2022

01/2022 DARK 110M – Moffat et al. 2022

08/2021 ProteinLM 3B 3.9e2124 Xiao et al. 2021 Beijing Academy o
AI

05/2021 ProteinBERT 16M – Brandes et al. 2022

12/2020 ESM-1 670M – Rives et al. 2021 Meta AI

09/2020 PRoBERTa 44M – Nambiar et al. 2020

07/2020 ProtTrans 11B Uncertain25 Elnaggar et al 2021 TUM, ORNL

03/2020 ProGEN 1.2B – Madani et al. 2020 Salesforce

06/2019 TAPE 38M – Rao et al. 2019

25ProtT5-XXL-U50: ( (920k + 343k) updates / (2122m proteins / 44000? batch size) x 2122m proteins x 11B
“connections” x 6 = 3.4e23. However, batch size is unreported for this model size.
(20? hours per epoch * 70? epochs) x 5616 V100s x Half precision x an imputed 30% utilization = 2.4e23. Epochs
and GPU-hours unreported for this model size.

24ProteinLM-3B: 21 days x 480 V100-32GBs x an imputed 30% utilization. May be overestimated by an extra factor
of 2, given that they seem to have trained the 1.2B and the 3B at the same time.

23RITA-XLARGE: 280m proteins. 25000 V100-hours x an imputed 30% utilization.

22PROGEN2-xlarge: Uses UniRef90 (144 million proteins) and BFD30 (48 million proteins).
350,000 steps x 1m batch size x 6.4 B “connections” x 6.

21ESM-2-15B: 270000 updates x 3.2M batch size x 15 B “connections” x 6. Alternatively, 60 days x 512 V100s x an
imputed 30% utilization.

20Ankh_large: 68 epochs x 45M proteins x 1.15 B "connections" x 6 (per C ≈ 6ND).
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It seems useful to compare with how parameter-count increased in NLP:

A trends in model size, narrowed to language-processing systems (◻), large-scale systems
(△), and multi-modal systems (☆), design with Epoch (2022).

We see that protein LMs are notably smaller than LLMs, but have scaled remarkably fast.

Future willingness to spend

Training GPT-3-sized models is both expensive (with a cost exceeding $5M for one full training
run) and technically challenging – only a few teams have the technical expertise and financial
means to scale training up to thousands of GPUs and to sustain one such computation over a
month.

We can see that Salesforce Research contributed the first really large protein LM, and they
continue to be active in the field (Salesforce, 2023). The present leader is Meta AI, which has26 a
dedicated Meta Fundamental AI Research Protein Team (Meta, 2023). Likewise, Google
DeepMind, while currently absent from our specific protein-LM space, contributed AlphaFold
and is generally active in “AI for science” (DeepMind, 2022); and Isomorphic Labs is a
drug-discovery company that was established as a spin-off from Deepmind. Recently, Microsoft
Research announced a AI4Science, a new initiative to accelerate progress in science (Bishop,
2022). While significantly fewer people work on protein-LMs than on LLMs at these labs, we
should nonetheless anticipate future scaling and for advances in NLP to continue to percolate
into protein design.

26After completing this report, we learned that this team was recently laid off in full.
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Another contender are pharmaceutical companies, presently missing from the list of
contributors, but who have strong financial incentive to develop better models. Pharma
companies have huge R&D expenses, with a Morgan Stanley (2022) estimate finding that “The
median investment required to bring a new drug to market is estimated to be nearly $1 billion,
while the true cost of research and development may be as high as $2.5 billion per marketed
therapy, when factoring in abandoned trials and clinical failures” and estimate that “a 20% to
40% reduction in costs for preclinical development across a subset of U.S. biotech companies
could generate the cost savings needed to fund the successful development of four to eight
novel molecules” — a significant incentive.

Indeed, investment in drug discovery companies is increasing rapidly according to Devereson et
al (2022):

For a forward-looking prognosis, Data Bridge Market Research (2022) predicts that the AI
bioinformatics market is expected to reach $37B by 2029, growing 42.7% per year.
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Data27

Data is the part of the AI triad with the largest discrepancy between protein and text. Data is
expensive to collect and exists in a limited amount – the UniRef50 dataset is seemingly the only
choice for large scale pre-training at present.

By contrast, data in the English language is abundant and diverse (Villalobos et al., 2022).
Datasets such as The Pile (Gao et al., 2021), MassiveText (Rae et al., 2021), and the PaLM
pre-training dataset (Chowdhery et al., 2022) are 825 GB, 10.5 TB, and 6.7 TB respectively.
BigQuery and BigPython are datasets of code reaching 4 TB and 5.5 TB respectively (Nijkamp,
2022). We reproduce Table 4 from Hu et al. (2022) that reviews databases available for
pre-training:

Dataset Proteins Size in GB Description Link

UniProtKB/Swiss-Prot 500K 0.59GB knowledgebase https://www.uniprot.o
rg/uniprotkb?query=*

UniProtKB/TrEMBL 229M 146GB knowledgebase https://www.uniprot.o
rg/uniprotkb?query=*

UniRef100 314M 76.9GB clustered sets o
sequences

https://www.uniprot.o
rg/uniref?query=*

UniRef90 150M 34GB 90% identity https://www.uniprot.o
rg/uniref?query=*

UniRef50 53M 10.3GB 50% identity https://www.uniprot.o
rg/uniref?query=*

UniParc 528M 106GB Sequence https://www.uniprot.o
rg/uniparc?query=*

PDB 190K 50GB 3D structure https://www.wwpdb.o
rg/ftp/pdb-ftp-sites

CATH4.3 N/A 1073MB hierarchical
classification

https://www.cathdb.i
nfo/

BFD 2500M 272GB sequence profile https://bfd.mmseqs.c
om/

Pfam 47M 14.1GB protein families https://www.ebi.ac.uk
/interpro/entry/pfam/

AlphaFoldDB 214M 23TB predicted 3
structures

https://alphafold.ebi.
ac.uk/

27See also an editorial in Nature (2023) pointing out data as a bottleneck for applicability of AI to chemistry.
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ProteinKG25 5.6M 147MB a KG dataset wit
GO

https://drive.google.c
om/file/d/1iTC2-zbvY
ZCDhWM_wxRufCv
V6vvPk8HR

Uniclust30 N/A 6.6GB clustered prote
sequences

https://uniclust.mmse
qs.com/

SCOP N/A N/A structural
classification

http://scop.mrc-lmb.c
am.ac.uk/

SCOPe N/A 86MB extended version o
SCOP

http://scop.berkeley.
edu

With the exception of 3D structures generated by AlphaFold, we see that the total size is
~720 GB. This is about an order of magnitude less than the datasets used to train frontier text
models, even the smaller ones (for example, LLaMa (Touvron, 2023) was trained on 1–1.4B
tokens, roughly 3.5–5 TB28).

Still, in some domains less (higher quality) data is enough for a highly capable model. CodeGen
(Nijkamp et al., 2022) filters BigQuery and BigPython down to 350 GB and 220 GB respectively.
But their follow-up work CodeGen2 (Nijkamp et al., 2023) uses Stack (Kocetkov et al., 2022), (3
TB) and the full BigPython (5.5 TB).

Presently, larger protein models mostly employ UniRef50, which is a mere 10GB, so there is
some room to scale up models using the above sources. But issues with the data quality in the
life sciences may not allow that.

Issues with data quality

High-throughput molecular assays and the curation of data resources (such as UniProt) are the
“engine” of the field (Ofer et al., 2021). But high-throughput techniques inevitably come with
certain quality limitations, according to Schnoes et al. (2013).

The data quality of some popular protein sequence datasets might be an issue. Ofer et al. (2021)
note that this data is smaller, sparser and more biased, which all cause challenges for
pre-training using auxiliary tasks.

In the experiments of Prot-T5, it was found that UniRef50 outperformed larger datasets such as
UniRef100 and BFD (Elnaggar et al., 2020). They trace the high quality of UniRef50 to its lack of
duplication and diversity in sequences. Indeed, Singer et al. (2020) discover “systematic biases
have influenced the completeness of data and the patterns of ‘dark matter’ of undiscovered
findings.”

28According to https://paperswithcode.com/dataset/massivetext, 300B tokens are 12.8% of the MassiveText
dataset and the whole dataset is ~10.5 TB.
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Growth of existing databases

In this subsection we examine how current databases are growing in size and whether we
expect a rapid influx of new protein sequences.

The exponential growth of UniProtKB, which consists of high-quality computationally
analyzed records, which are enriched with automatic annotation. As of May 2023, there are
250M sequence entries, comprising 87B amino acids (UniProt, 2023). UniParc and UniRef
show similar exponential growth (Bateman, 2020).

We see UniProtKB doubling in size in the last 7 years, corresponding to 11% annual growth or
0.043 OOMs/year. This is smaller than (but comparable with) historical growth rates of NLP
dataset sizes (0.23 OOMs/year) and CV (0.09 OOMs/year) dataset sizes (Villalobos & Ho,
2022).

But as we see from the following plots, after the transition to the “Foundation Models” paradigm
(Bommasani, 2021) and the “Large-Scale [Deep Learning] Era”, around 2016, (Sevilla et al.,
2022), a notable acceleration of dataset sizes occurred.
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Training datasets for language (left) and vision (right).

Villalobos et al. (2022) note that we are likely to run out of data “between 2030 and 2040 for
language models and between 2030 and 2060 for image models. This is particularly true for
high-quality language data, which seems likely to be exhausted by 2027”.

We have even greater constraints on high quality protein-related data in the future (if not
already), as most models29 regardless of their size (e.g., Prot-T5 and ESM-2-15B) are trained on
UniRef50 alone, which indicates no low-hanging fruit available to academic or industry labs. It
remains to be seen if (e.g.) active learning algorithms enable effective learning from larger
protein sequence datasets like UniRef100.

29Note that ProGen2 used UniRef90 (144 million proteins) and BFD30 (48 million proteins).
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New sources of data?

One way to expand protein sequence data might be to use the 2.4B30 genomic sequences from
Whole Genome Shotgun (NIH, 2023). Proteins are produced by the translation of messenger
RNA; datasets like UniParc already contain protein sequences predicted from mRNA readings.
Many of the 250M sequences in the NIH’s GenBank repository have likely already been added to
existing protein datasets, however. While WGS genomic sequences are incomplete, these
sequences still contain usable information. We should not forget that WGS data is likely to
suffer from the same set of quality issues most notably diversity..

We are aware of some companies (like Basecamp Research) assembling novel datasets
specifically for AI-powered drug-discovery (Eisenstein, 2023). With growing investment in
AI-based drug discovery and general growth in bioinformatics, we should expect more
specialist data brokers to supply datasets constructed particularly for these domains.

Possibility of synthetic data?

AlphaFold2 greatly expanded the world’s total store of protein structure data. We can wonder if
other advances in AI are likely to greatly expand the data stock. One path for this is generating
synthetic data from imperfect deep-learning simulations of proteins.

Synthetic data is often for a variety of machine learning tasks: models for image segmentation
are often pre-trained on synthetic data; and the classic LSTM (Hochreiter & Schmidhuber, 1997)
was validated on synthetic data. Sandve & Greiff (2022) argue that carefully constructed
simulated data might in some cases be superior to experimental data as “often available
experimental data do not have the size, resolution and sufficient set of controls that would
allow for rigorous method assessment.” Further, as discussed above, experimental data can be
biased because its collection depends on very specific ideas that an experimenter wants to
validate and assumptions they operate under, and is as such a highly selected subset of all
proteins. Synthetic data might flexibly allow for “sampling” parts of protein space with very
different background assumptions and auxiliary
hypotheses (Duhem, 1914).

30 We estimate this translating into 1.6TB of protein sequence data:
● "More than 95% of the protein sequences provided by UniProtKB come from the translations of coding

sequences (CDS) submitted to the EMBL-Bank/GenBank/DDBJ nucleotide sequence resources" (UniProt,
2023). Though, the most recent (May 2023) release notes say that 77% of entries list "Submitted to
EMBL/GenBank/DDBJ" among their reference.

○ EMBL-Bank/GenBank/DDBJ share data with each other, so we can think that data come from
GenBank.

● UniProtKB consists of UniProtKB/TrEMBL and UniProtKB/Swiss-Prot. As estimated by Hu et al. (2022), the
former has 229M sequences worth 146GB, and the latter has 500K sequences worth 0.59GB. At the
current size of 250M sequences, we can estimate the total size of 160GB.

● As of April 2023, GenBank has 243M sequences and 1.8T bases. As any base is one of A, T, G, or C (so 2
bits), we can estimate the size as 1.8T * 2 bits or 450GB.
So .77 to .95 of UniProtKB's 160GB protein sequence data came from GenBank's 450GB of genomic
sequence data.

● As of April 2023, Whole Genome Shotgun has 2440M sequences and 20.9T bases, which leads to a size
of 5.2TB.
So, at the same rate as GenBank, we can expect 1.6TB worth of protein sequences (= 5.2TB / 450 GB *
160 GB * (0.77 + 0.95) / 2). We probably should adjust that down as the nature of WGS might lead to
lower yields.
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To give an example, Robert et al. (2021) developed the Absolut! software suite that allows
parameter-based unconstrained generation of synthetic lattice-based 3D-antibody-antigen
binding structures. This allows us to translate antibody specificity prediction problems into ML
tasks.

Which avenues yield promising synthetic data for protein design? Recent progress in simulating
physical phenomena with deep learning (Bezenac et al., 2018; Noé et al., 2020 Hsin-Yuan Huang
et al., 2022) makes us wonder if various protein interactions can be simulated with these AI
techniques, yielding intriguing data, or if AI-enabled modeling could make “digital twins” of wet
labs much more effective, significantly increasing throughput.

Such simulations take time to construct and validate, but techniques focused on
sample-efficient black-box optimization could still make great use of it. One such framework for
wet-lab data was developed and tested in Angermueller et al. (2020).

Could the problem go away?

Sam Altman has claimed that GPT-4 cost more than $100M (tacitly, for a single full training run);
future systems are likely to cost even more. At this point, it’s already economical for leading labs
to intensely research increasing sample efficiency. Another contributing factor is that we will
run out of high-quality data (and the most useful data31 might run out as soon as 2025)
(Villalobos et al., 2022).

As Socher et al (2022) demonstrate, focusing system training on only the highest quality data
can make learning drastically more efficient, leading to more accurate models at a fraction of
the compute cost.

Algorithms

So the state of protein data is fairly gloomy. Improving and scaling algorithms in light of these
issues with data also faces serious challenges, but we highlight some opportunities from better
algorithms in the following subsection.

How much algorithmic progress should we expect?

Algorithmic progress in computer vision was examined by Hernandez & Brown (2020), who
found a 44-fold reduction in compute required to reach a given level of performance over the 8
years since AlexNet (Krizhevsky et al., 2012). So algorithmic progress has been a strong
contributor to AI progress, outpacing the original Moore's Law rate of improvement in hardware
efficiency. Besiroglu & Besiroglu (2022) examined progress in computer vision more closely and
concluded “that algorithmic improvements in image classification have been roughly as
important as the scaling of compute for driving performance improvements (with the caveat
that algorithmic progress was more crucial in early years, and compute scaling more important
in later years).”

31 E.g., code.
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While only CV has so far been examined thoroughly, this finding is “consistent with work in
other domains, such as computational solvers for linear programs, as well as computer chess,
[where software and hardware improvements] are both important drivers of performance
improvements, and that hardware improvements generally account for slightly more of total
performance improvements” according to Besiroglu & Besiroglu (2022).

Talent

It’s obvious that the application of LLMs to protein-generation has attracted much less research
talent than the application of LLMs to natural language. We list 16 language models in Trends in
parameter-counts, while Hannibal046 (2023) lists 46 milestone LLM papers; maybe 6 of these
16 papers seem similarly epochal to us.

But due to the lag32 between protein-LM and LLM methodologies, the protein-LM community
can borrow advances from the LLM community. And not only advances: as it gets harder and
harder to get marginal gains on the LLM frontier, protein generation may “borrow” LLM
researchers.

In closing, we can wonder what the protein analogs of in-context learning (Wei et al., 2022),
chain-of-thought prompting (Wei et al., 2022), and self-consistency through chain-of-thought
(Wang et al., 2022) will be.

Gains from careful engineering

Due to the stated dissimilarities between the protein and natural language domains, we should
not expect the many ad hoc rules of thumb developed over the years in NLP to be optimal for
protein language models.

Protein language

Vu et al. (2023) outline a linguistically-inspired roadmap for building a biologically reliable
protein language. By highlighting how the original linguistic-science intent shaped different
tools in NLP, they suggest that a more biologically-informed approach could benefit the
systems. Specifically they discuss that:

● pre-training data should reflect the goals of the downstream task;
● tokenization should aim for biologically meaningful units;
● token embeddings should capture protein function;
● and interpretability methods affect learnable patterns.

With this biological approach in mind, Elnaggar et al. (2023) run more than 20 experiments
about different architectural and data choices such as masking, layers, pre-training data.
This leads them to Ankh-1.2B, a protein language model that surpassed the state-of-the-art

32Based on the scale of the models and some key results like scaling, we can guess that protein-LMs are about 2
years behind LLM in terms of adopting frontline innovations and scaling-up.
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performance of ESM-2-15B with much fewer parameters (<10% for pre-training, <7% for
inference, and <30% for the embedding dimension).

It seems plausible that future algorithmic progress could yield similar gains. Two areas where
more progress would be beneficial are multi-modality and effective learning from small
datasets.

Multi-modality and small datasets

In Review of pre-trained protein “language” models, we separately highlighted attempts to use
additional information – be it protein structure33, homologies34, protein annotation or even
bio-medical texts. Further, we can integrate more biochemical data and even aim for a unified
model of drug discovery – using different input modalities in one system has often been
beneficial, even if at first sight they seem too dissimilar. Incorporating data across biochemical
domains should lead to disproportionate gains (Rao et al., 2019, Buehler, 2023).

A particular challenge here is data availability: for many modalities the existing data is sparse.
ProteinDT authors (Liu et al., 2023) note that “[Protein DT] has 441K data pairs, yet such a
dataset size is small compared to the vision and language domains. If we want to take the
protein backbone structure into consideration, that would be reduced to merely 45K pairs of
data. Thus, data insufficiency has become the bottleneck of this research problem.”

Both multi-modality and overcoming small datasets are areas of active research. We speculate
that some progress can be made by observing ideas used in the machine translation (MT) of
rare languages. Meta AI are well positioned to investigate this as leaders in both protein LLM
and in MT of rare languages (Meta, 2023).

Benchmarks35

Ott et al. (2022) describe the role of benchmarks in progress and innovation: “Benchmarks have
become crucial to the development of artificial intelligence (AI). Benchmarks typically contain
one or more datasets and metrics for measuring performance. They exemplify and—explicitly or
implicitly—define machine learning tasks and goals that models need to achieve. Models
achieving new state-of-the-art (SOTA) results on established benchmarks receive widespread
recognition. Thus, benchmarks do not only measure, but also steer progress in AI.”

Benchmarks help to identify real progress, Ferruz et al. (2022) shares an amusing anecdote: “In
the first half of the 1990s, at a time when having solved the protein folding challenge
sporadically made headlines, the Critical Assessment of Structure Prediction (CASP) set the
standard against which in-silico predictive methods for protein structure needed to prove
advancement.” Protein folding remained out of the headlines until 2018.

35 For a critique of the state of benchmarks in de novo drug design see Goto (2021).

34 Notin et al. (2022) combine autoregressive predictions and homology from retrieved sequences at inference.

33 Zhang et al. (2023) we propose to pretrain protein representations according to their 3D structures, yielding
significant improvement that synergise well with sequence pretraining.
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Images and text vs Proteins

We now compare protein generation to image and text generation.

Objective?
First, the output proteins are objective: they either have the properties we wanted or they do
not. This contrasts with judging the performance of systems like DALL-E and ChatGPT, which
are so general that they lack (“ground-truth”) objective evaluation.

Objectivity comes at a cost: evaluation requires a wet lab. Costly objective evaluations are thus
more suitable for competitions rather than benchmarks. Alongside36 CASP, CAFA (Critical
Assessment of Function Annotation), and CAPRI (Critical Assessment of PRediction of
Interactions) are bi-anual contests in which many research groups predict structures, functions
or interactions of proteins not yet (publicly) experimentally determined.

Benchmarks, unlike competitions, are accessible at any given point in time and can be iterated
upon. This makes them crucial for continuous research and progress.

Unintuitive?
DALL-E and ChatGPT still allow for a somewhat accurate37 subjective impression of
impressiveness. But with protein design we are in the dark: objectivity is the model, while I alone
cannot tell whether a generated protein is toxic or virulent. So detecting progress is naturally
more difficult.

Proxies?
Imperfect evaluations have proved useful in visual and textual domains: measurements such as
the Frechet Inception Distance (Huesel et al., 2017)38 proved to be useful in the development of
image models.

Downstream tasks?
In 2019, in the infancy of protein representation learning, there were no standardized
benchmarks. Rives et al. (2021) and Bepler et al. (2019) report incomparable transfer learning
results. TAPE (Tasks Assessing Protein Embeddings) introduced by Rao et al. (2019) was the first
set of diverse tasks in a convenient, standardized format which was aimed to assist protein
engineering.

38 FID rates model highly even if it just memorized the data, failing to produce novel images.

37 Bowman (2023) cautiously notes: “Brief interactions with LLMs are often misleading” as clever prompt
engineering often uncovered capabilities unavailable at the first sight.

36 Note that all of these focused on prediction and not generation. We are not aware of “objective” protein
generation competitions.
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Later other datasets were developed:
● Huang et al. (2021) introduced TDA, an extensive evaluation platform, containing

protein-related datasets and tasks for drug discovery
● Townshend introduced (2021) ATOM3D provides benchmark datasets for 3D molecular

learning tasks.
● Dallago C, et al. (2022) introduced FLIP, a three protein landscape benchmarks for

fitness prediction evaluation.
● Capel et al. (2022) introduced ProteinGLUE, “a set of seven tasks for evaluating learned

protein representations.”
● Xu et al. (2022) introduced PEER, “a set of diverse protein understanding tasks including

protein function prediction, protein localization prediction, protein structure prediction,
protein-protein interaction prediction, and protein-ligand interaction prediction.”

● Notion et al. (2022) introduced ProteinGym, “an extensive set of multiplexed assays of
variant effects, substantially increasing both the number and diversity of assays
compared to existing benchmarks.”

In private communications researchers report issues with data contamination, particularly issues
with properly separating training data from test data due to many biological sequences being
very similar to each other as they are related by evolution (Petti & Eddy, 2022).

Liu et al. (2023) notes that “for some types of predictive tasks, like stability, independent
simulation-based methods, such as Rosetta, could complement the surrogate-based
evaluation.”

Zheng et al. (2023) argues that in other domains, the successful recovery of native data (and
their in-domain held-out set), coupled with the ability to synthesize completely new data, was
enough for generative models to capture underlying patterns and generalize.

But do they actually generate proteins?
Nonetheless, with so many synthetic benchmarks and evaluations focused on reconstruction,
we are left wondering if protein generation methods really work.

They do.39 Madani et al. (2021) experimentally evaluate model-generated artificial proteins
confirming ability to perform de novo protein generation. Verkuil et al. (2022) “focus on two
protein design tasks: fixed backbone design where the structure is specified, and unconstrained
generation where the structure is sampled from the model” and find “high overall success rates
(152/228 or 67%) in producing a soluble and monomeric species by size exclusion
chromatography” while observing that “35 [of 152 design] have no significant sequence match
to known natural proteins” showing that it’s not about memorisation. And “Lorenz [CTO of
Basecamp Research] says that his team’s own [protein] design experiments have achieved an
80% success rate at producing functional proteins” (Eisenstein, 2023).

Zheng et al. (2023) summarized the state of indirect evidence well: “these protein language
models are able to generalize across a wide range of downstream applications and can

39 Outside of protein design, we are aware of the following work where AI-generated molecules have been
experimentally validated: Polykovskiy et al., 2018, Merk et al., 2018,Merk et al., 2018, Zhavoronkov et al., 2019, Tan
et al., 2020, Li et al., 2020, Yang et al., 2020, Yoshimori et al., 2020, Perron et al., 2022, Korshunova et al., 2022,
Godinez et al., 2022.
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capture evolutionary information about secondary and tertiary structures from sequences
alone. They have recently been demonstrated with strong capabilities in uncovering protein
structures, predicting the effect of sequence variation on function, antibody infilling, and many
other general purposes.”

Putting it all together for biology

For a final forecast, we decompose the trajectory of AI solving a domain into two steps:

1. an “ImageNet moment” (“a model, dataset and pretraining task that provide strong
off-the-shelf performance for most tasks, even with little data” to quote Ofer et al.
2021), followed by

2. impressive40 generative models first being trained.

Finally, we guess how fast these models will proliferate under a business-as-usual scenario.

ImageNet moment

Current models are capable of impressive deeds like protein folding prediction, massively
expanding the speed at which data on a sequence is made available for further work.41

Nonetheless, the models are not multimodal enough, and nor have they demonstrated learning
from a diverse set of small datasets. At the same time, due to fast scaling, we should expect
more from the next generation of pre-trained protein language models than we otherwise
would.

It seems highly likely that AIs will assist humans with AI research a few years from now, given
interest from both Meta, who have relevant expertise, and Deepmind, who have demonstrated
breakthrough after breakthrough. And so it’s hard to see why a suitably scalable multimodal
architecture would take more than 1–5 years to develop.

Another possibility is that the most impressive LLMs will not only be trained on visual and
textual internet data but also on other modalities, like protein sequences. This huge increase in
the available training data could enable a discontinuous jump in model size, and hence
(assuming scaling continues to work) in capabilities.

Impressive generation

As a reminder, image generation progressed from “underwhelming” to “very impressive” in 7
years; NLP went from its “ImageNet moment” to ChatGPT in 4–5 years. We are already past the
“underwhelming” generation of protein-LMs, as we can synthesize actual proteins (see But do
they actually generate proteins?).

41 ESM-2 powers ESM-Fold (Lin et al., 2022)

40 Here “impressive” is of course imprecise, we are roughly tracking “widely used by the general public because of
how good it is.”
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In Algorithms, we discussed ways in which protein generation is clearly behind on adopting
NLP’s best practices. Biologically-aware directions (e.g. domain-specific tokenizers) could result
in significant improvements (and Ankh (Elnaggar et al., 2023) has already delivered some of
them, leading to 10x savings in model size). On willingness to scale and develop technology: we
see great interest from leading AI labs to continue contributing to science – and on the other
hand, we have pharma companies, who have a strong financial incentive in the success of
protein generation. We should thus expect a lot of algorithmic progress.

On the other hand, good quality data seems to be limited to UniRef50. This unavailability of data
is likely to affect how much scaling can be done. We should expect more data to become
available as this is commonly realized. We see several ways the bottleneck can be revealed:

1. A growing bioinformatics market and growing investment in AI for drug discovery
(Future willingness to spend) will likely create a niche for companies specializing in creation of
proprietary datasets specifically for generative AI. And better quality data can significantly
improve performance42. Some of these companies would likely specialize in synthetic data to
enlarge particularly small datasets.

2. Expand protein sequence data might be to 2.3B genomic sequences from WGS.

3. Lastly, it doesn’t seem impossible that progress in AI could result in improved
modeling/simulation leading to much more “pseudo-experimental” data that previously was
bottlenecked by wet labs43.

Another factor that could alleviate the data bottleneck is the growing cost of leading NLP
systems. Sam Altman claimed that GPT-4 cost >$100M, with future systems likely to cost even
more. At this point, it’s already economical for leading labs like OpenAI to put a lot of research
talent into increasing sample efficiency, which quickly trickles down to protein ML.

A smaller factor is the rather uninspiring state of relevant benchmarks (Benchmarks); see also
Goto (2021). While generative AI in general can progress without good benchmarks (e.g,
computer’s use of indirect proxy metrics), benchmarks are extremely helpful. Given the current
state of AI technology, we wouldn’t be surprised to see the automated creation of benchmarks,
resolving this issue.

Overall, data and benchmarks are presently notably worse than the counterparts in early CV and
NLP. Protein ML will likely compensate for that with willingness to spend and algorithmic
progress (partly through transferring ideas from the sequence modelling leader, NLP).

Following protein’s Imagenet moment, we predict it will take 2–4 years to get towards a really
impressive protein generation, with a longer tail if its data bottleneck is not relieved.

43 We already saw that to some degree in NLP, see Jiang (2023).

42 See sections Issues with data quality for a protein-specific example. And Could the problem go
away?
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Proliferation through open-source

We discussed the hyperactivity of the open-source ML community and how little they lag the
leading labs (in part due to some of the leading labs regularly open-sourcing their models).

The situation is seemingly worse in protein generation, all three most capable models were
open-sourced on day one:

● Ankh (Elnaggar et al., 2023) @ https://github.com/agemagician/Ankh

● ESM-2 (Lin et al., 2022) @ github.com/facebookresearch/esm

● ProGen2 (Nijkamp, 2022) @ github.com/salesforce/progen/tree/main/progen2 Meta AI

and Salesforce Research seem to be committed to open access:

● In their review of evolution of LLMs, Yang et al. (2023) write “Meta contributes
significantly to open-source LLMs and promotes research of LLMs. When considering
contributions to the open-source community, particularly those related to LLMs, Meta stands
out as one of the most generous commercial companies, as all the LLMs developed by Meta are
open-sourced.”

● Salesforce Research also open sourced their other major models, such as CodeGen
(Nijkamp et al., 2022) and CodeGen2 (Nijkamp et al., 2023).

On the other hand, while the open-source community got excited about StableDiffusion and
ChatGPT, they seem less inclined to get excited about powerful biological models. We put this
down to the unintuitive domain: human hobbyists can’t distinguish protein sequences from
each other. Most people most likely wouldn’t be able to synthesize anything given a sequence
(in part due to KYC policies). One cannot say that interest is negligible though: ESM-2 has 2k
Github stars. T5 (for years the most powerful open-sourced LLM) has 5.2k stars.

Either way, with the labs keeping their default open-source-everything policy, it’s hard not to
see insights proliferating. It’s unclear how the labs would realize it is a good time to stop this
practice44 – especially if we take into account AI progress was surprising and it has been quite
possible simply to not notice latent AI capabilities (see Bowman (2023)). If a generation of
models just short of “extremely impressive” is open-sourced, it seems highly likely that someone
in open source would pull it over the threshold.

Proliferation is likely to be instantaneous unless norms change (they might – there is growing
concern about dual-use (Urbina et al., 2022)), or if accessing key datasets would come with a
legal requirement to release the resulting model checkpoints. In this case, proliferation might be
delayed by some years.

44 One option is that they would licence proprietary datasets with licences limiting how model checkpoints could
be shared.
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In sum

● Protein’s ImageNet moment might arrive in 1–5 years given attention from Meta and
DeepMind, and with AIs accelerating AI research.
● Following protein’s Imagenet moment, it will take 2–4 years to get towards a really
impressive protein generation with a longer tail if data bottleneck wouldn’t be relieved.
● Proliferation is likely to be instantaneous unless norms to open access will change or if
access to key datasets will require not to release the model checkpoints. Otherwise, it might be
delayed by some years.

This means that impressive generative capabilities are likely to be developed in 3 to 8 years.
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